|
|||
Current volumePast volumes
1952-1968
1944-1951
1936-1944 |
Conformal semi-invariant Riemannian maps to Kähler manifolds
Volume 60, no. 2
(2019),
pp. 459–468
https://doi.org/10.33044/revuma.v60n2a12
Abstract
As a generalization of CR-submanifolds and semi-invariant Riemannian maps, we
introduce conformal semi-invariant Riemannian maps from Riemannian manifolds to
almost Hermitian manifolds. We give non-trivial examples, investigate the
geometry of foliations, and obtain decomposition theorems by using the existence
of conformal Riemannian maps. We also investigate the harmonicity of such maps
and find necessary and sufficient conditions for conformal anti-invariant
Riemannian maps to be totally geodesic.
|
||
Published by the Unión Matemática Argentina |