|
|||
Current volumePast volumes
1952-1968
1944-1951
1936-1944 |
Cofiniteness of local cohomology modules in the class of modules in dimension less than a fixed integer
Volume 62, no. 1
(2021),
pp. 191–198
https://doi.org/10.33044/revuma.1786
Abstract
Let $n$ be a non-negative integer, $R$ a commutative Noetherian ring with
$\dim(R)\leq n+ 2$, $\mathfrak{a}$ an ideal of $R$, and $X$ an arbitrary
$R$-module. In this paper, we first prove that $X$ is an
$(\operatorname{FD}_{< n}, \mathfrak{a})$-cofinite $R$-module if $X$ is an
$\mathfrak{a}$-torsion $R$-module such that
$\operatorname{Hom}_{R}\big(\frac{R}{\mathfrak{a}}, X\big)$ and
$\operatorname{Ext}_{R}^{1}\big(\frac{R}{\mathfrak{a}}, X\big)$ are
$\operatorname{FD}_{< n}$ $R$-modules. Then, we show that
$\operatorname{H}^{i}_{\mathfrak{a}}(X)$ is an $(\operatorname{FD}_{< n},
\mathfrak{a})$-cofinite $R$-module and $\{\mathfrak{p}\in
\operatorname{Ass}_R(\operatorname{H}^{i}_{\mathfrak{a}}(X)) :
\dim\big(\frac{R}{\mathfrak{p}}\big)\geq n\}$ is a finite set for all $i$ when
$\operatorname{Ext}_{R}^{i}\big(\frac{R}{\mathfrak{a}}, X\big)$ is an
$\operatorname{FD}_{< n}$ $R$-module for all $i\leq n+ 2$. As a consequence,
it follows that $\operatorname{Ass}_R(\operatorname{H}^{i}_{\mathfrak{a}}(X))$
is a finite set for all $i$ whenever $R$ is a semi-local ring with
$\dim(R)\leq 3$ and $X$ is an $\operatorname{FD}_{< 1}$ $R$-module. Finally,
we observe that the category of $(\operatorname{FD}_{< n},
\mathfrak{a})$-cofinite $R$-modules forms an Abelian subcategory of the
category of $R$-modules.
|
||
Published by the Unión Matemática Argentina |